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1 Introduction

Economic activity contracted sharply in the U.S. during 2020 as COVID-19 spread rapidly

and all levels of government introduced health and containment policies aimed at curbing

the virus. Understanding the impact of the pandemic on economic activity as well as the

effectiveness and economic impact of health and containment policies has been a major

challenge faced by policymakers throughout the world when designing policies to respond

to the outbreak of COVID-19. Disentangling the effects of COVID-19 spread and health

containment policies on economic activity is a difficult problem. The fundamental issue

is that economic activity, COVID-19 spread, and health containment policies are jointly

determined and causally affect each other.

The goal of this paper is to empirically investigate the causal linkages between COVID-19

spread, health containment policies, and economic activity up to the introduction of vaccines

in early 2021. To do so, we model their joint dynamics as generated by a structural vector

autoregression (SVAR) model and estimate it using U.S. data. Motivated by salient economic

and epidemiological features of COVID-19, we identify shocks to each of these variables by

making assumptions on the short-run relation between them. We estimate the model with

sufficient power despite the short time series by exploiting heterogeneity across U.S. states

in the timing and intensity of COVID-19 spread and policy responses. We use exports data

disaggregated by state of production, destination country, and disaggregated product codes

to isolate the direct impact of COVID-19 spread and health containment policies on economic

activity controlling for fluctuations in demand that might also be affected by these channels.

Our main findings are as follows. First, we find that an increase in the spread of COVID-

19 leads to a moderate contraction of economic activity but does not significantly affect the

stringency of health containment policies. In particular, a shock that leads to a doubling of

COVID-19-related deaths is estimated to lead to an almost 5% decline of exports on impact.

This finding shows that COVID-19 has been detrimental to economic activity and suggests

that it might not be possible to overcome the economic contraction observed during the

COVID-19 outbreak without first resolving the pandemic itself.

Second, we find that health containment policies are very effective at reducing the spread

of COVID-19 but are estimated to lead to a significant yet transitory contraction of economic

activity. In particular, a shock to health containment policies that increases their stringency
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by approximately one standard deviation of their cross-state variation is estimated to reduce

deaths and exports by approximately 75% and 7.5%, respectively. Our estimates imply that

economic activity recovers quickly and the impact of the policies returns to pre-shock levels

within a quarter. These findings provide a positive view on the effectiveness of health con-

tainment policies, significantly mitigating the pandemic without inflicting long-term damage

to economic activity.

Finally, we find that economic support policies lead to a significant decline of COVID-19

spread while keeping overall economic activity unchanged. In particular, a shock to economic

support policies that increases their generosity by approximately half a standard deviation

is estimated to reduce deaths by 13%. Economic support policies might provide firms and

households with the resources to adapt their operations to the new environment: encourag-

ing contact-intensive economic activity to shut down temporarily, leading to a reduction of

COVID-19 spread while allowing economic activity in non-contact-intensive occupations to

continue operating.

Taken together, these findings suggest that health containment and economic support

policies are complementary to each other and highly effective at curbing the spread of

COVID-19 without leading to a long-term contraction of economic activity. Conversely, they

suggest that limited governmental responses on both health and economic fronts exacerbate

the spread of COVID-19 while contracting economic activity. Thus, our paper contributes to

a rapidly growing literature that investigates the joint relation between COVID-19 spread,

the policy responses to it, and economic activity. While much of the literature has in-

vestigated these joint dynamics using quantitative equilibrium models, we provide a novel

approach to identify empirically the relative role of these channels during the COVID-19

pandemic.

Our empirical strategy is based on addressing three key issues. The first problem consists

of identifying the shocks to each of the variables. We address this problem by making

assumptions consistent with salient economic and epidemiological features of COVID-19. In

particular, we make the following assumptions on the short-term relation between COVID-

19 spread, health containment policies, and economic activity. We assume that (i) shocks to

economic activity do not contemporaneously affect COVID-19 spread or health containment

policies, (ii) shocks to health containment policies affect economic activity but do not impact

COVID-19 spread contemporaneously, and (iii) shocks to COVID-19 spread affect economic
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activity and health containment policies contemporaneously. We measure COVID-19 spread

using data on deaths due to COVID-19, and conduct the analysis using monthly data.

Given this empirical implementation, we argue that assumptions (i)-(iii) capture salient

epidemiological features of COVID-19 as well as key features of the link between policy-

making and economic activity.

The second problem consists of obtaining estimates with sufficient power despite the

limited number of time series observations available to estimate the system using data since

the beginning of the pandemic. We overcome this problem by exploiting heterogeneity across

U.S. states in the dynamics of COVID-19, health and containment policies, and economic

activity. We therefore identify the effects of COVID-19 spread and health containment

policies from differences in their timing and intensity across U.S. states.

The third problem consists of isolating the direct supply-side impact of COVID-19 spread

and health containment policies on economic activity. In particular, our goal is to identify

how much COVID-19 spread and policies affected the extent to which people have been

able to work and produce in isolation from changes in demand. We control for differences

in demand levels and dynamics across U.S. states by using manufacturing exports data

disaggregated by state of production, destination country, and 4-digit product code. We

identify the supply-side impact of COVID-19 spread and health containment policies under

the assumption that exports are only a function of domestic supply and foreign demand

factors. Moreover, our access to disaggregate exports data allows us to contrast the dy-

namics of exports across states by controlling for demand fluctuations within (destination

country,product code,month) triples.

Our estimation approach is therefore designed to identify the relative role of COVID-

19 spread and government policies by comparing the dynamics of exports within (4-digit

product code,destination country,month) triples across states that differ in the extent of

COVID-19 spread and policy responses. For instance, consider exports from multiple U.S.

states of a given 4-digit HS product code (e.g., 4-digit HS code 8712: “bicycles and other

cycles, including delivery tricycles, not motorized”) to a given destination (e.g., France) in

a given period (e.g., June 2020). Our approach identifies the relative impact of virus spread

and government policies by comparing narrowly defined export transactions across states

that differ in the intensity, timing, and response to the pandemic.

We estimate the model following this approach, orthogonalize the shocks à la Cholesky,
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and compute impulse response functions to quantify the causal impact of shocks to COVID-

19 spread and health containment policies. We then contrast these implications with their

counterparts based on a model estimated with economic support policies in place of health

containment policies. After documenting our main findings, we investigate the potential

importance of using disaggregate exports data, and the extent to which our findings depend

on the timing in which exports are measured. We conclude by examining the implications

of our findings for the dynamics of employment during COVID-19. We show that shocks

to COVID-19 spread and health containment policies are likely to have led to a significant

decline of employment, yet more muted than exports.

Finally, we would like to emphasize that the focus of our analysis is restricted along

a few dimensions. First, our analysis and identification strategy are best suited to study

the joint dynamics between COVID-19 spread, health containment policies, and economic

activity in the absence of vaccines. Thus our focus on the pre-vaccine period up to January

2021, when only non-pharmaceutical tools were available to combat the disease — a critical

stage in any pandemic.1 Second, we restrict attention to the type of health and contain-

ment policies effectively introduced by developed economies such as the U.S. or European

countries in response to COVID-19 — e.g., mask mandates, testing requirements, or school

closures, among a wide range of interventions introduced during this period. Thus, our con-

clusions on their role is limited to these types of policies, and we abstract from other types

of policy responses.2 Third, we abstract from the impact on relatively high contact-intensive

occupations by restricting attention to economic activity in the manufacturing sector.

Our paper contributes to several literatures that have grown exponentially since the onset

of COVID-19. On the one hand, our paper is closely related to a series of papers written

early in the pandemic with the goal of theoretically and quantitatively understanding the

impact of containment policies on the spread of the virus and economic activity. The work

of Eichenbaum et al. (2020), Alvarez et al. (2020), Berger et al. (2020), Jones et al. (2020),

Kaplan et al. (2020), among many others, has been very influential in highlighting the joint

interactions between economic activity, the spread of the virus, and containment policies.

1Note that our findings are not only applicable to the period prior to the introduction of vaccines. To the
extent that vaccines become less effective with the emergence of new variants, our findings can also prove
critical at advanced stages of a pandemic.

2In particular, our analysis is silent on the role of more severe lockdown policies such as those implemented
by several Asian countries.
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Our paper contributes to this literature by disentangling empirically the causal linkages

between these channels. Thus, our findings provide a natural benchmark to evaluate the

implications of quantitative macroeconomic-epidemiological models.

On the other hand, this study is closely related to a rapidly growing empirical literature

that investigates the impact of containment policies on virus spread and economic activity.

This literature was sparked by Correia et al. (2020), who use U.S. data from the 1918

flu pandemic to study the health and economic impact of non-pharmaceutial interventions

(NPIs) implemented in the U.S. and across countries during COVID-19. Several studies have

now studied the joint linkages between virus spread, containment policies, and economic

outcomes across countries during COVID-19: Camehl and Rieth (2021), Zhuo et al. (2020),

Demirguc-Kunt et al. (2020), Caselli et al. (2020), Chen et al. (2020), Deb et al. (2020),

among others.3 We contribute to this growing empirical literature by developing a novel

identification approach to estimate a SVAR model of the joint dynamics of COVID-19 spread,

policies, and economic outcomes. Our approach exploits heterogeneity across U.S. states and

relies on previous findings on the timing among them as well as on rich disaggregate data

on international trade to isolate their supply-side impact from fluctuations in demand.

Methodologically, our paper builds on the estimation methods developed by Sims et al.

(1986) and others. Variations of these methods have been recently applied to answer ques-

tions on COVID-19 complementary to ours: Brinca et al. (2020), Yilmazkuday (2020), Beirne

et al. (2020). We contribute to this literature by exploiting cross-state heterogeneity in

COVID-19 spread, containment policies, and economic activity to investigate and quantify

their causal linkages.

The rest of the paper is structured as follows. Section 2 develops our empirical framework

and methodology. Section 3 describes the data that we use to estimate the model. Section 4

presents the main results. Section 5 presents additional findings. Section 6 investigates the

implications for the dynamics of employment. Section 7 concludes.

3Beyer et al. (2020) is a related study focused on India, while Mezencev and Klement (2021), Lai et al. (2020),
and Flaxman et al. (2020) focus on the health impact of containment policies. Padhan and Prabheesh (2021),
Brodeur et al. (2020), and Perra (2021) provide detailed reviews of the related empirical literature.
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2 Empirical Methodology

In this section we develop our empirical framework and methodology. We present our model,

discuss our identification assumptions, and derive the implied orthogonalized system that

we use to compute our findings.

2.1 Model

We model the joint dynamics of COVID-19 virus spread, health containment policies, and

exports as jointly driven by the following vector autoregression: Vs,t

Ps,t

Xs,t,i

 = A

 Vs,t−1

Ps,t−1

Xs,t−1,i

 +
K∑
k=1

 Bk
V

Bk
P

Bk
X

Zk
s,t,i + Ω

 εVs,t,i

εPs,t,i

εXs,t,i

 (1)

where V , P , and X denote the main variables of interest: COVID-19 spread, health and

containment policies, and exports, respectively. Subscripts s, t, and i denote state, period,

and an export-specific identifier, respectively. In our baseline empirical application, i denotes

(product,destination) pairs and t denotes (month,year) pairs. A and Ω are 3× 3 matrices.

{Zk
s,t,i}Kk=1 is a set of K control variables, and {Bk

V , B
k
P , B

k
X}Kk=1 are their respective coeffi-

cients for each equation of the model.4 Finally, εV , εP , and εX are mean-zero innovations

We normalize the variance-covariance matrix of the innovations such that:

V


 εVs,t,i

εPs,t,i

εXs,t,i


 =

 1 0 0

0 1 0

0 0 1

 .
Then, we have that the variance-covariance matrix of the shocks is given by:

V

Ω

 εVs,t,i

εPs,t,i

εXs,t,i


 = ΩΩ′,

where the prime superscript denotes the transpose of a matrix. Let ΣΩ := ΩΩ′.

4Zk
s,t,i ∈ R ∀k. Note these controls can be used to estimate the model with fixed effects.
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2.2 Identification and Orthogonalized SVAR

One of the main goals of the paper is to investigate the effects of shocks to COVID-19 spread

and health containment policies on economic activity. To do so requires that each shock of

the model is identified as a shock to one of the three variables of the model. Without further

assumptions, however, the model laid out above features a standard identification problem:

The matrix Ω that controls the dynamics of the system is not identified. In particular, while

Ω is a 3× 3 matrix with 9 unknowns, we only have 6 equations to back them out from the

empirical counterpart of the variance-covariance matrix ΣΩ due to its symmetry.

To make progress on this front, we make assumptions which introduce further restrictions

that allow us to identify Ω. In particular, we follow the approach of Sims et al. (1986)

and others in making assumptions on the short-run relation between the shocks and the

endogenous variables of the model.

Given ΣΩ is a positive-definite matrix, there exists a Cholesky decomposition such that

ΣΩ can be expressed as:

ΣΩ = LL′,

where L is a lower triangular matrix with real and positive diagonal entries.

Next, we pre-multiply the model by L−1, the inverse of L, which is also lower triangular:

L−1

 Vs,t

Ps,t

Xs,t,i

 = L−1A

 Vs,t−1

Ps,t−1

Xs,t−1,i

 +
K∑
k=1

L−1

 Bk
V

Bk
P

Bk
X

Zk
s,t,i + L−1Ω

 εVs,t,i

εPs,t,i

εXs,t,i

 . (2)

This reformulation of the reduced-form model (equation 1) has two desirable features.

First, the variance-covariance matrix of the shocks is now equal to the identity matrix:

V

L−1Ω

 εVs,t,i

εPs,t,i

εXs,t,i


 = I,

which follows directly from the observation that (L−1)
′
= (L′)−1. That is, the shocks are now

orthogonal to each other. Then, they can only contemporaneously impact other endogenous
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variables of the system through the effect of L−1 on the dependent variables (that is, through

the left-hand side of equation 2).

This leads us to the second desirable feature of the reformulated model. Notice that the

left-hand side of equation (2) can be expressed as:

L−1

 Vs,t

Ps,t

Xs,t,i

 =

 L−1
V,V 0 0

L−1
P,V L−1

P,P 0

L−1
X,V L−1

X,P L−1
X,X


 Vs,t

Ps,t

Xs,t,i



=

 L−1
V,V Vs,t

L−1
P,V Vs,t + L−1

P,PPs,t

L−1
X,V Vs,t + L−1

X,PPs,t + L−1
X,XXs,t,i


The above expressions along with the reformulated model imply that (i) COVID-19 spread

in period t is only affected by εVs,t,i and is not a function of health containment policies or

exports, (ii) health containment policies in period t are only affected by εPs,t,i and contem-

poraneous COVID-19 spread Vs,t but not by exports in that period, (iii) exports in period

t are affected by εXs,t,i as well as by contemporaneous fluctuations in COVID-19 spread and

health containment policies.

These implications result from the ordering of the variables that we specified in equation

(1) for the endogenous variables of the model. Thus, our ordering choice is equivalent to

our choice of assumptions on the contemporaneous relation across the endogenous variables

of the model. Below we describe in more detail and provide our rationale for each of the

identification assumptions underlying the orthogonalized SVAR presented in equation (2).

The validity of our identification assumptions is necessarily linked to some details of our

empirical implementation, such as the frequency of the data or the variables that we use to

estimate the model. The empirical implication is described in detail in the next section, but

we discuss any such details here wherever necessary.

Identification Assumption 1 Virus spread Vs,t is not affected by contemporaneous shocks

to either policies or exports but only by shocks to virus spread itself.

In the next sections, we estimate the model using monthly data and measure COVID-

19 spread using data on deaths due to COVID-19 as reported by the Centers for Disease
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Control and Prevention (CDC). Then, Identification Assumption 1 implies that deaths due

to COVID-19 in a given month are not affected by contemporaneous shocks to either policies

or exports but only by shocks to virus spread itself.

We argue that this assumption is consistent with salient features of the nature of deaths

due to COVID-19. According to estimates from the CDC, the typical number of days from

exposure to COVID-19 to death is between 22 and 25 days. This results from an average time

from exposure to symptom onset of approximately 6 days (McAloon et al. 2020) combined

with a median number of days from symptom onset to death of 16-19 days (Faes et al. 2020).5

Therefore, we interpret deaths due to COVID-19 measured in a given month t as the

result of contagion that took place in period t − 1 rather than t; thus, our assumption

that virus spread in t is not affected by contemporaneous shocks to policies or economic

activity. Note that this assumption is strictly about the contemporaneous relation across

these variables: Shocks to policies and economic activity can affect virus spread but only

with a lag.

Identification Assumption 2 Policies Ps,t are not affected by contemporaneous shocks

to exports but only by shocks to virus spread and policies.

Our second identification assumption consists of the contemporaneous determinants of

health and containment policies Ps,t. We assume that these policies are contemporaneously

determined by shocks to both COVID-19 spread and policies themselves, but not by shocks

to exports, our measure of economic activity.

Note that we model health containment policies as responding asymmetrically to con-

temporaneous developments: they are allowed to respond contemporaneously to changes in

virus spread but not to changes in exports. We believe this asymmetry accurately captures

the information available to policymakers when making policy decisions. While COVID-19

led to the development of infrastructure to track the evolution of the pandemic in real time,

economic data are typically only available with a lag.6 Yet, note that, while health contain-

ment policies are assumed not to respond to contemporaneous changes in economic activity,

they can do so with a lag.

5See https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html for details, updated as of
March 19, 2021.

6For instance, the schedule of data releases from the Bureau of Labor Statistics shows that data are released
with a one-month lag at best (https://www.bls.gov/schedule).
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Identification Assumption 3 Exports Xs,t,i are affected contemporaneously by shocks to

virus spread, policies, and exports.

Our last identification assumption is that exports can be affected contemporaneously by

either shocks to virus spread, policies, or exports. This assumption is less strict than the

previous assumptions, as it does not constrain the contemporaneous determinants of eco-

nomic activity, but instead lets the relative importance of those determinants to be estimated

directly from the data.

2.3 Impulse Response Functions

After estimating the orthogonalized SVAR model described in equation (2), we evaluate the

implications of the estimated model by computing impulse response functions.

To do so, we assume all variables are at their long-run average values in period t =

0 and investigate their changes in response to one-time shocks in period t = 1 to each

of the endogenous variables of our model. We let {ηt}∞t=1 denote the sequence of 3 × 1

shocks and let it be equal to the zero vector in all periods except in period t = 1. In our

empirical implementation we only consider shocks to each of the variables one at a time; here

we illustrate our approach for the general case of shocks to potentially all the endogenous

variables.

Let {xt}∞t=1 denote the sequence of 3× 1 vectors of changes for each of the endogenous

variables of the model after shock η1 is realized in period t = 1; these are the impulse

response functions to the given shock. That is, xt := yShock
t − yNo shock

t , where yShock
t and

yNo shock
t denote the dynamics of the 3 × 1 vectors of endogenous variables in period t with

and without the shock, respectively. The vector of impulse response functions is given by:

xt = At−1 × L× η1. (3)

A key difference between our model and standard vector auto-regression models are

our control variables {Zk
s,t,i}Kk=1. This makes the computation of impulse response functions

non-standard, since assumptions need to be made about the path of the control variables

when comparing the endogenous variables with and without the shocks. Our assumption is

that the path of the control variables is independent of the shocks; that is, the values of the

control variables are assumed to be identical in both scenarios.
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2.3.1 Confidence Intervals

In our empirical implementation we compute confidence intervals for the impulse response

functions via Monte Carlo simulation.

Our estimated equation (1) delivers a matrix of estimated coefficients A along with its

respective variance-covariance matrix ΣA.7 We draw N matrices of estimated coefficients

{An}Nn=1 from a multivariate Normal distribution with mean A and variance-covariance

matrix ΣA. For each An, we compute impulse response functions following equation (3).

The 90% confidence intervals of the impulse response functions in period t are given by

percentiles 5 and 95 across the N period-t impulse response functions; we set N = 10, 000

in our empirical implementation.

2.4 Variance Decomposition

We evaluate the role of each shock on the endogenous variables of the model by decomposing

their variance via Monte Carlo simulation. This allows us to compute the share of the overall

variance of each variable accounted by each of the shocks.

Our approach consists of simulating N time series over T periods for each of the endoge-

nous variables of the model. To do so, for each time series n we draw T vectors of shocks

from the identity matrix. We initialize the lagged vector of endogenous variables in period

t = 0 to zero and set the control variables to zero for all time series n = 1, ..., N and periods

t = 1, ..., T . We then use equation (2) to simulate the endogenous variables of the model

given the shocks and our estimates of A, Ω, and L−1. For each simulated time series n, we

compute the overall variance of each endogenous variable.

To compute the share of the overall variance accounted by shocks to variable j, we

consider the same set of shocks drawn above. The key difference is we restrict attention

to shocks to variable j when simulating the endogenous variables of the model. For each

simulated time series n, we then compute the variance of each endogenous variable in response

to shocks to variable j while setting all other shocks to zero. The share of the overall variance

of each endogenous variable k accounted by shocks to variable j is the ratio between the

variance of variable k when only subject to shocks to j relative to the overall variance of

variable k.

7We estimate the variance-covariance matrix ΣA clustering standard errors by state-period pairs.
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3 Data

In this section we describe the data that we use to implement the estimation approach

described in Section 2. Our focus throughout is on the period prior to the introduction

of vaccines, from March 2020 to January 2021. We begin by describing the variables used

throughout the paper. We then present summary statistics and additional details of our

approach to estimating the model in the context of these data.

3.1 Key Variables

The key variables of our model are our measures of COVID-19 spread, health and contain-

ment policies, and exports. We now describe our data sources for each in turn.

3.1.1 COVID-19 Spread

Our baseline measure of COVID-19 spread is given by the number of deaths due to COVID-

19. These data are available across states at a daily frequency from the Centers for Disease

Control and Prevention (CDC). Given we conduct the empirical analysis at a monthly fre-

quency, we aggregate daily data to a monthly frequency by computing the number of persons

that died due to COVID-19 in each month. Moreover, to study differences in COVID-19

spread across states with different populations, we express deaths in each state relative

to population. To do so, we use state-level population data for 2019 from the Bureau of

Economic Analysis. The units of our COVID-19 spread variable are then expressed as the

number of persons that died due to COVID-19 per million inhabitants in each month.

We focus on deaths due to COVID-19 rather than hospitalizations or cases given that

it allows us to capture both the spread of COVID-19 as well as a key outcome of interest to

both individuals and policymakers during the pandemic. Indeed, in the Online Appendix we

document that the number of deaths is a key determinant of health and containment policies

across U.S. states during COVID-19. Moreover, our focus on deaths ensures the validity of

our identification assumptions: Identification Assumption 1 would be violated at a monthly

frequency if we used data on hospitalizations since the CDC estimates that the time from

exposure to hospitalization is around 12 days (McAloon et al. 2020; Faes et al. 2020).8

8We conduct the analysis at a monthly frequency due to the lack of higher frequency exports data.
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3.1.2 Health and Containment Policies

We measure the health and containment policies introduced to combat COVID-19 across

U.S. states using indices computed by the Oxford COVID-19 Government Response Tracker

(OxCGRT; Hale et al. 2020). The goal of these indices is to quantify the policy responses

to COVID-19 across U.S. states, capturing differences in the types of policies implemented

as well as in their intensity. We use their “containment and health” index as our baseline

measure of health and containment policies.

The index of health and containment policies is designed to aggregate variation across

states in the following set of policies: school closings, workplace closings, cancellation of

public events, limits on gatherings, closing of public transportation, “shelter-in-place” orders,

restrictions on internal movement, restrictions on international travel, public information

campaigns, government policies on testing access, government policies on contact tracing,

and requirements of mask use.

For each type of government policy j from the above list, the OxCGRT team quantifies

the strength of the policy measure in each period t using an ordinal scale ranging from 0

(weak policy response) to 100 (strong policy response), obtaining a sub-index Ij,t.
9,10 The

health and containment policy index is obtained by computing a simple average across each

of the policy-specific sub-indices. While this index is available at a daily frequency, we

aggregate it to a monthly frequency by computing its average value for each month. The

monthly level health and containment policy index ranges from 0 (weak policy response) to

100 (strong policy response).

Our use of these data as our baseline measure of health containment policies is motivated

by the richness of the data available (high frequency and disaggregated across states) as well

as by the transparency of its collection, methodology, and construction. It is nevertheless

important to note that these data have some limitations. On the one hand, while OxCGRT

has clear guidelines on the quantification process to map policies into indices, parts of this

process can turn out to be somewhat subjective. On the other hand, the data are designed

to capture the government responses but not necessarily the take-up rate or enforcement of

9These sub-indexes include policies set by the federal government where those are more stringent than
state-level ones.

10See https://github.com/OxCGRT/covid-policy-tracker/blob/master/documentation/index_

methodology.md for further details on OxCGRT’s approach to computing these policy-specific sub-
indices.
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the policies among the general population.

3.1.3 Exports

We study the monthly dynamics of exports during COVID-19 by state (plus Washington

D.C.), 4-digit harmonized system (HS) product categories, and destination country. We

focus on exports of manufactures and control for seasonality by computing the log-change

of exports in a given month over the period March 2020 - January 2021 relative to the same

month in the previous year. These data are collected by, and obtained from, the U.S. Census

Bureau.

3.2 Additional Variables

Economic Support Policies During COVID-19, U.S. state governments implemented

both health containment policies and economic policies designed to alleviate the economic

problems raised by the pandemic. Excluding the latter policies from our baseline specification

could bias our estimates since they might be potentially correlated with economic activity

(e.g., exports) as well as with the dynamics of COVID-19 spread (e.g., more economic support

could have helped to keep people at home, preventing virus spread).

Our baseline specification thus controls for cross-state differences in the economic policy

response to COVID-19. We measure the relative strength of these policies across U.S. states

using the Economic Support Index constructed by OxCGRT. This index is designed to

quantify the relative strength of state-level policies to support individuals by providing direct

cash transfers related to unemployment, as well as policies for alleviating financial obligations

on contracts such as student loans and rent. This index ranges from 0 (weak policy response)

to 100 (strong policy response). The methodology is analogous to the one used to construct

the health containment index.

Contact Intensity States might have also experienced differential dynamics during

COVID-19 due to differences in the types of industries and occupations prevalent under

their jurisdiction. For instance, to the extent that a state is more specialized in industries

requiring closer physical contact, they might have been more likely to experience an economic

downturn during the pandemic regardless of the health containment policies and degree of
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COVID-19 spread.

We therefore control for cross-state differences in the contact-intensity of the industries

and occupations prevalent in each state. To do so, we follow the methodology of Leibovici,

Santacreu, and Famiglietti (2020a, 2020b) to construct a state-level measure of contact-

intensity. In particular, we assign an index of physical proximity (PPIO) from O*NET (an

occupational database) to each individual in the 2017 American Community Survey (ACS)

based on their occupation. We then compute the average physical proximity index across

all individuals in each state; this is our measure of state-level contact-intensity prior to the

pandemic.

State Partisan Composition State-level differences in political preferences might have

also affected the degree of non-mandated precautions taken by individuals as well as the

extent to which enacted policies were actually implemented in practice. These differences

could affect the measured effectiveness of health and containment policies as well as their

economic impact.

We isolate the role of policies from cross-state differences in political leanings by con-

trolling for states’ partisan composition. To do so, we use data on the composition of state

legislatures in April 2020, at the beginning of the pandemic, from the National Conference

of State Legislatures.

3.3 Summary Statistics

Our analysis is designed to estimate the role of COVID-19 spread and health containment

policies on each other as well as on economic activity by exploiting cross-state variation over

time along these dimensions. We now provide summary statistics to illustrate the degree of

cross-state variation featured by our data.

Table 1 reports summary statistics on the distribution across states for each of the

variables. Panel A reports the distribution of state-level averages while Panel B reports the

distribution of state-level maximum values for each of the variables.11

Panel A shows that there is significant variation across states in COVID-19 spread,

policy responses (the health containment and economic policy indices), and our measure of

economic activity. In particular, we observe significant variation in the COVID-19 spread

11For all variables, average and maximum values corresponding to each state are computed across time.
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variable (std. dev. of deaths equals 48 per million inhabitants), as well as in the policy

indices (std. dev. higher than 8 for both, for an index ranging from 0 to 100). While the

average change of exports across states has been negative, we observe significant variation,

ranging from a 27% decline at the 10th percentile to a 1% increase at the 90th percentile.

Panel B shows that the significant variation of our variables of interest across state-

level averages are also observed across state-level maximum values. In contrast to Panel

A, however, the extent of COVID-19 spread and policy responses are naturally larger when

focusing on maximum values. The significant difference in the absolute values between

averages and maximum values reveals the severity of the pandemic at its peak. For instance,

the maximum decline of exports was 50% on average across states while the maximum

number of deaths was 364 on average per million inhabitants.

Finally, in Panel C of Table 1 we provide summary statistics on exports disaggregated

by 4-digit HS product, state of origin, and destination country. This variable features a

high level of variation as evidenced by a standard deviation that is substantially larger

than the mean and median. This is not surprising as demand for some products increased

drastically during the pandemic, such as medical equipment (Leibovici and Santacreu 2020),

while decreasing drastically for others. Moreover, changes of exports at such a high level

of disaggregation are likely to capture the pervasiveness of idiosyncratic shocks beyond the

aggregate impact of the pandemic.

3.4 Empirical Implementation

We now describe additional details of our implementation of the estimation approach de-

scribed in Section 2, ranging from the dataset construction and cleaning to details of the

estimation.

The vector of endogenous variables of the SVAR model that we consider throughout the

paper is given by: Vs,t

Ps,t

Xs,t,i

 =

 ln Deathss,t

Health and containment policy indexs,t

∆ ln Exportss,t,i

 (4)

where deaths are per million inhabitants, the health and containment policy index, and
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Table 1: Summary Statistics — March 2020 to January 2021

Panel A: State Averages

Mean Std. Dev. 10th Percentile Median 90th Percentile
Deaths 119.99 48.26 47.21 120.04 182.69
Log Deaths 4.12 0.56 3.34 4.30 4.60
Health and Containment Policy Index 51.13 8.36 42.65 49.95 62.04
Economic Support Policy Index 41.26 19.75 17.78 40.76 65.03
Exports (log-change) -0.13 0.13 -0.27 -0.13 0.01

Panel B: State Maximums

Mean Std. Dev. 10th Percentile Median 90th Percentile
Deaths 363.97 181.69 133.94 358.33 575.87
Log Deaths 5.78 0.52 4.90 5.88 6.36
Health and Containment Policy Index 62.09 7.85 53.36 61.25 71.31
Economic Support Policy Index 56.19 18.88 37.50 62.50 87.50
Log Change Exports -0.50 0.27 -0.78 -0.43 -0.24

Panel C: Disaggregated Exports

Mean Std. Dev. 10th Percentile Median 90th Percentile
Exports (log-change) -0.03 1.09 -1.31 -0.07 1.30

Notes: The first panel shows summary statistics for the averages of each variable across states. The second panel shows summary statistics for the

maximum values (minimum value of change in exports) of the variables across states. Panel C displays summary statistics for exports disaggregated

by destination country, HS-4 product categories, and time periods. Log-changes are year-to-year changes of the logged variable.

exports are measured as described above. The log-change of exports is computed relative to

the same month of the previous year.

The set of control variables for each of the endogenous variables consists of: (i) state-level

physical proximity index, (ii) state-level economic support index, (iii) Republican majority

indicator, and (iv) difference between Republicans and Democrats in their fraction of the

state legislature. These variables allow us to control for differences across states that might

spuriously affect the estimated relation between COVID-19 spread, health and containment

policies, and economic activity. For instance, differences in the state-level physical proximity

or economic support indexes might affect the extent to which contact-intensive occupations

outside of manufacturing remain active during the pandemic, thus affecting the observed

dynamics following shocks to policies or COVID-19 outbreaks. Similarly, differences in state-

level political leanings might impact the extent to which enacted policies are implemented

and the prevalence of broader precautionary actions such as mask use.

We estimate the model described in Section 2 with fixed effects at the product-
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destination-period level in the exports equation. This allows us to isolate the supply-side

impact of COVID-19 spread and policies by controlling for fluctuations in demand at the

product-destination level that might be common across states. Individual observations are

weighted by the total nominal export value of the state, product, destination triple in 2019.

This allows us to interpret the implications of our model as informative about the state-level

dynamics of exports.

We focus on exports to a subset of all possible trade partners in order to exclude bilateral

relations that are small or infrequent. To do so, we restrict the set of trade partners to consist

of the 35 countries with the highest demand for U.S. exports, accounting for over 90% of

aggregate U.S. exports.12 In addition, we mitigate the impact of outliers by (i) restricting

our sample to observations with exports larger than $10,000, (ii) Winsorizing the top and

bottom 1% of export log-changes. Finally, we require each (state,product) pair to have

data available for at least four months, and each (product,destination,period) triple to have

data available for at least 10 states. Our findings are robust to alternative data cleaning

approaches along each of these dimensions.

4 The Effect of Health and Economic Policies on COVID-19

Spread and Economic Activity

We now investigate the effects of health and economic policies implemented across U.S. states

in response to COVID-19 on the spread of the virus as well as on economic activity.

4.1 Health and Containment Policies

We begin by examining the effects of health and containment policies implemented during

the COVID-19 pandemic in order to curb the spread of the virus. To do so, we proceed as

follows.

First, we estimate the reduced-form VAR model from Equation (1) with the set of control

variables described in Section 3.4. Second, we orthogonalize the estimated model and express

it as in Equation (2). Finally, we consider shocks to each of the variables of the model and

compute impulse response functions for each variable in response to each of the shocks. The

12Our findings are robust to restricting attention to the largest 90% product-destination pairs.
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Figure 1: Impulse Response Functions – Model with Health Policies

set of shocks that we consider is designed to evaluate the impact of large shocks to either

COVID-19 spread or health containment policies.

Shock to COVID-19 Spread We first investigate the impact of a shock to COVID-19

spread, as proxied by an increase in the number of deaths due to COVID-19. In particular,

we consider the impact of a shock leading to a 1 log-point change in the number of deaths

— that is, an almost tripling of the number of deaths. The panels in the top row of Figure

1 plot the dynamics of deaths, health and containment policies, and exports following the

shock.

19



The top-left panel plots the dynamics of the variable being shocked, deaths, following a

shock that increases it by 1 log-point. We find the shock is relatively short-lived, with the

number of deaths due to COVID-19 back to half its peak level after approximately 4 months.

Interestingly, we find that this sizable increase in COVID-19 spread only leads to a

modest change of health containment policies (top-middle panel). In particular, as deaths

increase by 1 log-point, the health containment policy index is estimated to decrease by

approximately 2.5 points (out of its 0 to 100 range). This finding implies a measured gov-

ernmental response to curb the virus via health containment policies in response to a shock

that almost triples the number of deaths.13

Not surprisingly, we find that the shock leads to a transitory decline of economic activity,

as proxied by the dynamics of exports relative to the previous year (top-right panel). In

particular, exports decline by around 5% on impact in response to a shock that almost

triples the number of deaths due to COVID-19.

This transitory decline might result from the impact of higher COVID-19 spread leading

individuals to stop going to work and firms to shut down temporarily. While dead individuals

cannot go back to work, healthy individuals might additionally opt (or be encouraged) to

avoid going to work to prevent further infections. Note that our empirical analysis does

not allow us to distinguish between these direct and indirect effects of COVID-19 spread

on economic activity — thus, our estimated effects should be interpreted as capturing the

combination of both direct and indirect effects.

Shock to Health and Containment Policies Next, we investigate the impact of a shock

that leads to a tightening of health and containment policies. In particular, we consider the

impact of a shock that increases the health and containment policy index by 10 points,

approximately one standard deviation of the average cross-state variation. The bottom

panels of Figure 1 plot the impulse response functions corresponding to each of the variables

of our model.

The bottom-middle panel plots the dynamics of the variable being shocked, the health

and containment policy index, following a 10-point increase in its value. We find the shock is

relatively short-lived, with the health containment policy index declining to half of its peak

13This finding may capture the observation that the stringency of health containment policies across U.S.
states peaked early in the pandemic, featuring an overall downward trend through most of the period; see
Figure 3.
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value after 3-4 months.

We find that health and containment policies are very effective at achieving their primary

goal: curbing COVID-19 spread. In particular, the bottom-left panel of Figure 1 shows that

a 10-point increase in the health and containment policy index leads to a 1.45 log-point

decline in the number of deaths; that is, deaths are significantly reduced soon after the

policies are implemented.

However, we find that the success of health and containment policies at curbing the

spread of COVID-19 comes at the cost of reduced economic activity. In particular, the

bottom-right panel of Figure 1 shows that a 10-point increase in the health and containment

policy index leads to an immediate 5% decline of exports relative to the previous year. This

significant reduction of economic activity is nevertheless estimated to be transitory, with

effects fully reverted after around 4 months.

These findings provide a compelling case for the efficacy of health and containment

policies that states undertook in response to the pandemic. Our model implies that a shock

to the health and containment policy index reduces the spread of COVID-19 significantly

and for an extended period of time. In the short-run, the shock lowers exports relative to the

year prior, but there is a rapid recovery and no negative effect in the medium run, implying

no persistent damage to economic activity as a result of a shock to health policies.

4.2 Economic Support Policies

The analysis above highlights the effectiveness of health and containment policies to curb

the spread of COVID-19. One “side-effect” of these policies has been their negative impact

on economic activity, as implied by our estimated impulse response functions. We now

investigate the impact of economic support policies implemented in the U.S. during the

outbreak of COVID-19 to alleviate the direct negative impact of the pandemic on economic

activity as well as its indirect impact via health and containment policies.

To do so, we re-estimate our model with the economic support index described in Section

3.2 as our policy response variable instead of the health and containment index. We refer

to the model examined in this section as the “model with economic policies”; the model

examined in Section 4.1 is referred to as the “model with health policies.” Analogous to our

approach above, we control for the index of health and containment policies to isolate the
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role of economic-related policies relative to health-related ones.14 All other controls are as

described above. We then orthogonalize the estimated model and compute impulse response

functions following the approach of Section 2. These dynamic responses are displayed in

Figure 2.

The top panels of this figure report the impact of a 1 log-point increase in the number of

deaths due to COVID-19 per million inhabitants on the endogenous variables of our model.

Unsurprisingly, we find that this shock to deaths leads to very similar dynamics of policies

and exports as the analysis above with data on the health and containment policy index.

Shock to Economic Support Policies We now study the impact of a shock to economic

support policies. As in Section 4.1, we examine the impact of a 10-point increase in the

economic support policy index; this is approximately equal to half of the standard deviation

of the average state-level index (Panel A in Table 1). The bottom panels of Figure 2 plot

the impulse response functions corresponding to each of the variables of our model.

We find that increases in the economic support provided by U.S. state governments to

households and firms leads to a significant reduction in the number of deaths due to COVID-

19, as observed in the bottom-left panel of Figure 2. Thus, the provision of economic support

to offset income losses and to freeze financial obligations during the pandemic might have

encouraged individuals and businesses in contact-intensive occupations to stay at home,

thereby leading to a slowdown of COVID-19 spread.

On the other hand, the bottom-right panel of Figure 2 shows that exports remain large

unchanged in response to the introduction of these policies. These findings suggest that the

introduction of economic support policies during the pandemic simultaneously reduced the

spread of COVID-19 while ensuring economic activity is unaffected. The economic support

might have encouraged workers in contact-intensive occupations to stay home, leading to a

decline of COVID-19, thereby allowing workers in non-contact-intensive occupations such as

manufactures to continue working.

In summary, economic policies during the pandemic worked largely as intended — they

slowed down the spread of COVID-19 while allowing economic activity in non-contact in-

tensive sectors to continue. Thus, these policies are likely to have mitigated the negative

14In Section 3 of the Online Appendix we report our findings for a model estimated using a comprehensive
policy index that combines both health containment and economic support policies.
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Figure 2: Impulse Response Functions – Model with Economic Policies

short-run effects from the implementation of even more stringent health and containment

policies. The dynamic response of exports to both economic and health policies indicates

that increased spread of COVID-19 harmed the economy during this period, but that govern-

ment policies worked largely as intended and dramatically reduced the spread of COVID-19,

facilitating economic recovery in the near term.

4.3 Variance decomposition

Next, we investigate the relative importance of shocks to COVID-19 spread vs. shocks

to policy responses (health containment or economic) in accounting for the variance of the
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Table 2: Variance decomposition

Share of variance due to:

Death shocks Policy shocks

Panel A: Model with health policies

Deaths 0.77 0.23

Policies 0.30 0.70

Exports 0.51 0.49

Panel B: Model with economic policies

Deaths 0.90 0.10

Policies 0.12 0.88

Exports 0.81 0.19

Notes: Share of variance accounted by shocks to deaths or policies; we exclude

shocks to exports in computing these results. Based on 100 time series simulated

for 12 periods, burning the initial 1000 periods. See Section 2.4 for further details.

endogenous variables of our model. To do so, we follow the approach described in Section 2.4.

In particular, we use the model to simulate 100 time series of the endogenous variables over

a 12-month period as a function of shocks to COVID-19 spread and the policy responses.15,16

We simulate the model separately for each shock at a time, and then simulate the model

with both shocks jointly. We then compute the variance of the endogenous variables of the

model for each of these simulations. Table 2 reports the relative contribution of each shock

to the total variance of the endogenous variables.

Panel A reports the relative contribution of COVID-19 spread and policy shocks to the

variance of the endogenous variables of the model with health policies. First, we observe

that 23% of the variance of deaths is accounted for by shocks to health containment policies.

While it shows that most of the variation in deaths is driven by the intrinsic epidemiological

dynamics of the virus, it nevertheless implies that policies can have a non-trivial impact

on these dynamics. Second, we find that approximately 30% of the variation in health

15Specifically, each time series is simulated for 1012 periods; the first 1000 periods are dropped.
16We abstract from shocks to exports given our focus on isolating the relative importance of shocks to

COVID-19 spread relative to shocks to policy responses.
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containment policies is accounted by shocks to COVID-19 spread. This finding suggests

that cross-state differences in these policies might have not primarily responded to differences

in COVID-19 spread, but rather to intrisic differences across states in their propensity to

introduce such policies. Finally, we find that economic activity, as proxied by our focus

on manufacturing exports, is evenly driven by shocks to health containment policies and

COVID-19 spread.

Panel B reports the analogous findings for the model with economic policies. In contrast

to the findings reported in Panel A, we find that shocks to COVID-19 spread have a smaller

impact on the introduction of economic support policies: 12% of their variance is accounted

by such shocks. We also find a larger impact of shocks to COVID-19 spread on economic

activity: 81% of the variance of exports is accounted by such shocks relative to shocks to

economic support policies.

5 Additional Findings

In this section, we conduct a series of simple exercises designed to put our findings in context

as well as to understand the role played by various features of our empirical approach.

First, we investigate the extent to which the dynamics implied by our structurally estimated

model are consistent with those implied by a simpler approach that simply contrasts the

dynamics across U.S. states with weak vs. strong policy responses. Second, we investigate

the role played by our reliance on international trade data (rather than a more inward-

oriented variable) as a potentially important component of our empirical approach. Finally,

we investigate the sensitivity of our findings to adjusting the timing of exports to account

for potential production and exports measurement lags.17

5.1 Contrast with Empirical Dynamics Across States

We now contrast the implications of the estimated model relative to the data. For brevity,

we focus on the effects of a health and containment policy shock.18 To construct an empirical

counterpart to such impulse response functions, we contrast the dynamics of the endogenous

17See the Online Appendix for additional exercises to examine the sensitivity of our findings to the following
alternatives: (i) measuring policy responses using a comprehensive policy index, (ii) measuring economic
activity using employment data, and (iii) controlling for cross-market reallocation.

18Our findings are robust to contrasting the effects of economic support policies with evidence from the data.
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variables of the model between the 5 states with the strictest health and containment policies

vis-à-vis the 5 states with the weakest health and containment policies. Specifically, we

identify these states based on the average monthly health and containment index for each

state between March 2020 and January 2021.

Figure 3 plots the dynamics of health and containment policies, exports, deaths, and

manufacturing employment for the 5 states with the strictest and weakest health containment

policies, as well as for the aggregate. We compute the variables corresponding to each 5-state

group in each period as population-weighted averages (using 2019 population data). We find

significant differences in the empirical dynamics of the endogenous variables of the model

across states with strict vs. weak health and containment policies. Moreover, we find that

these differences are consistent with the impulse response functions implied by our model.

The top-left panel plots the dynamics of the health and containment policy index. We

observe that both types of states tightened their policies early in the pandemic, gradually

easing them thereafter until late 2020. Importantly, we observe a persistent gap across

both types of states, reflecting the sharp differences in the health and containment policies

implemented across U.S. states during the COVID-19 pandemic.

We now investigate the extent to which the differential dynamics across these two types

of states for the rest of the endogenous variables are consistent with the impulse response

functions in response to a shock to health and containment policies. On the one hand, the

top-right panel shows that, while exports declined in both types of states, exports declined

more sharply over the first few months in states with the strictest policies. Starting in

July 2020, the dynamics of exports have been similar across both state groups. The larger

economic contraction observed in states with stricter health containment policies is consistent

with the causal effects implied by our model.

On the other hand, the bottom-left panel shows that deaths increased sharply early in

the pandemic regardless of the type of policy response. While the increase was larger initially

in states with the strictest policy response, the spread of COVID-19 declined rapidly in these

states while it continued to increase in states with weak health containment policies. The

rapid and persistent decline of COVID-19 spread associated with stricter health containment

policies is consistent with the causal effects implied by our model.

Finally, the bottom-right panel shows that manufacturing employment declined across
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all states regardless of the intensity of their response to COVID-19.19 States with the least

stringent health and containment policies declined the least initially but also experienced

minimal recovery throughout our sample. In contrast, the states that implemented the

strictest policies experienced the largest declines in manufacturing employment, but recov-

ered more rapidly.

5.2 Role of International Trade Data

We now investigate the role played by our reliance on international trade data for our findings.

Our use of exports data provides us with several ex-ante advantages relative to more inward-

oriented variables. As discussed earlier, working with exports data allows us to abstract

from the impact of COVID-19 spread and policy responses on economic activity through

their impact on domestic demand — thus, allowing us to isolate the supply-side impact of

COVID-19 spread and policy responses on economic activity.

Moreover, trade data allow us to conduct the analysis at a level of disaggregation that

is not available for more inward-oriented variables like employment or output. In particular,

we have access to exports disaggregated by (i) destinations, (ii) 4-digit product codes, and

(iii) state of production. This allows us to identify the role of COVID-19 spread and policies

within (i) and (ii). In our baseline model, we exploit these features by controlling for

destination-product-time fixed effects. Thus, we contrast the effect of COVID-19 spread and

policies across U.S. states by comparing the dynamics of exports of the same products to the

same destinations — thus allowing us to control for potential differences in the dynamics of

foreign demand across U.S. states. We now evaluate the extent to which our findings rely

on the degree of disaggregation of the exports data.

5.2.1 Export Sales Disaggregated by Destination

We begin by investigating the role of using exports data disaggregated by destination, which

allows us to contrast the dynamics of exports across states within both product categories

and destinations.

To examine the role of exports disaggregation by destination, we contrast our findings

reported in Section 4 with those implied by an alternative specification that abstracts from

19We use monthly data on manufacturing employment across states from the Bureau of Labor Statistics.
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Figure 3: Empirical Dynamics Across States, by Health Containment Policies

this dimension. In particular, we aggregate the exports variable across destinations such

that each exports value in our dataset now corresponds to a (product,state,period) triple; as

opposed to (product,state,destination,period) in our baseline. We use this alternative dataset

to estimate the same specification as our baseline but without destination fixed effects.

Figure 4 contrasts the impulse response functions implied by this alternative model vis-
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à-vis our baseline results. We find that estimating our model without having access to data

disaggregated by destination significantly affects some of its quantitative and qualitative

implications.

A key difference arises in the impact of health and containment policies on exports. The

model without disaggregation by destination implies that the decline of economic activity

on impact is larger than implied by our baseline. And, moreover, that economic activity

remains depressed for longer. Thus, without controlling for differences in demand across

destinations, one would then conclude that health containment policies lead to a larger

economic contraction than implied by our baseline.

The effect of economic support policies is similarly amplified if we abstract from ex-

port destinations. In particular, we find that economic policies are much more effective

at stimulating the economy when abstracting from the destination dimension; the bottom

right panel of Figure 4 shows a shock to economic policies more than doubles their baseline

positive effect.

5.2.2 Exports Sales Disaggregated by Detailed Product Categories

Another salient feature of our baseline analysis is the use of exports data disaggregated by

detailed product categories (at the 4-digit HS level). To evaluate the role of this feature on

our findings, we recompute our analysis using data at the 3-digit NAICS level, a coarser level

of aggregation. The results are reported in Figure 5.

We find that our use of disaggregated product-level data does not play a fundamental

role in accounting for our findings. In particular, recomputing the analysis at a coarser level

of aggregation leads us to estimates that imply very similar impulse response functions. The

main exception is in the response of exports to changes changes in economic support policies:

our baseline implies a smaller response of economic activity. Thus, we conclude that demand

fluctuations at the product-destination level may be largely captured by fluctuations at the

industry-destination level.

5.3 Alternative Timing of Exports

An implicit assumption in our baseline analysis is that exports measured and observed in

period t were produced in period t. This implicit assumption motivates our assumption
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Figure 4: Impulse Response Functions – No Export Destinations

that exports are contemporaneously affected by shocks to COVID-19 spread or government

policies (Identification Assumption 3 in Section 2).

However, these assumptions might be violated if there is a mismatch between the mea-

surement and production periods: that is, if exports measured and observed in period t

(measurement period) were actually produced in period t − 1 (production period). Under

such alternative timing, shocks to COVID-19 spread or government policies would not be

able to impact measured exports contemporaneously. Given the limited guidance provided

by our data to select across alternative timing assumptions for the measurement of exports,

we now examine the sensitivity of our findings under this alternative. In particular, we
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Figure 5: Impulse Response Functions – 3-digit NAICS

recompute the analysis with the timing of exports adjusted to capture the production of

exports rather the measurement period. In practice, this consists of estimating the model

assigning exports measured in t+ 1 to the vector in period t.20

Figure 6 reports the impulse response functions implied under this alternative timing

of exports. We find that most of our findings are robust to this alternative timing assump-

tion, both qualitatively and quantitatively. One exception is the response of exports to an

economic support policy shock: In contrast to the baseline, the alternative model implies a

20For instance, the vector of variables corresponding to June 2020 consists of COVID-19 spread and policies
for June 2020 and exports measured in July 2020.
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Figure 6: Impulse Response Functions – Alternative Timing of Exports

transitory economic contraction following an increase of economic support policies.21

6 Virus Spread, Containment Policies, and Employment

The analysis thus far has focused on the role of virus spread and government policies on

economic activity as proxied by exports. As we show throughout the paper, our use of exports

data offers several advantages to identify the impact of these channels relative to inward-

21These effects are statistically insignificant in both the baseline and the alternative considered here.
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oriented variables like employment or output. One potential limitation for extrapolating our

findings to the broader economy, however, is that exports are only a fraction of economic

activity even within the manufacturing sector.

While data limitations prevent us from conducting the analysis using data on employ-

ment instead of exports, we now investigate the potential implications of our findings for the

role of virus spread and government policies on the dynamics of employment.

The analysis conducted in the previous sections provides causal estimates of the dy-

namics of exports conditional on the size of shocks to COVID-19 spread and policies. We

now use these estimates to evaluate their potential implications for employment based on

the comovement between exports and employment during the COVID-19 pandemic.22 Given

our focus on manufacturing exports, we evaluate the implications for manufacturing employ-

ment. As in the previous section, we use monthly data on manufacturing employment across

states from the Bureau of Labor Statistics.

To do so, we consider a specification motivated by our baseline model. In particular,

we assume manufacturing employment in a given U.S. state and period is a function of

contemporaneous virus spread, government policies, exports, and the same set of control

variables as our baseline model. Thus, we estimate:

Es,t = βV Vs,t + βPPs,t + βXXs,t,i +
K∑
k=1

αkZ
k
s,t,i + εEs,t,i, (5)

where Vs,t, Ps,t, and Xs,t are defined and measured as in our baseline (Equation 4), while

{Zk
s,t,i}Kk=1 is also the same set of control variables.23 In particular, virus spread is measured

in logs while exports is measured as the log-change relative to the previous year. Similarly,

we measure manufacturing employment as the log-change relative to the previous year in

order to isolate the potential impact of seasonality. Estimating Equation 5 via OLS allows us

to identify the pattern of comovement between manufacturing employment and the variables

in our SVAR model. Thus, they do not necessarily capture the causal impact on employment

of the channels under analysis.

22See Section 4 of the Online Appendix for an alternative complementary approach to evaluate the implica-
tions for employment.

23In contrast to the exports equation in the baseline, we do not include product-destination fixed effects
since employment is observed at the (state,period) level.
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Figure 7: Implied Employment Dynamics

Our goal is to investigate the dynamics of employment that we might observe following

a shock to COVID-19 spread or health containment policies. To do so, we proceed as fol-

lows. First, we estimate Equation 5 via OLS. Second, we take the dynamics of COVID-19

spread, health containment policies, and exports implied by our baseline model following

each of the shocks considered in the previous sections.24 Then, we feed the dynamics of

these variables into the estimated version of Equation 5 to obtain an implied path of em-

ployment dynamics following each shock.25 The implied employment dynamics associated

with a shock to COVID-19 spread and health containment policies are plotted in Figure 7.

We interpret these implied employment dynamics as capturing the expected comovement

between employment and the variables in our model — not necessarily the causal impact of

the latter on the former.

We find a smaller response of employment to COVID-19 spread and health containment

policy shocks than their implied effects on exports in Figure 1. Increased COVID-19 spread is

associated with a decline of employment that is one-fifth of the response of exports. Similarly,

shocks to health and containment policies are associated with a decline of employment lower

than 1%, approximately one-tenth of the decline in exports. While these findings do not

24Figure 1 plots the dynamics of the variables that we focus on.
25We assume the control variables remain unchanged, as we do to compute the impulse response functions

in previous sections.
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establish a causal link between employment and the variables in our baseline model, they do

imply that the shocks we identify through our SVAR analysis are correlated with appreciable

declines of manufacturing employment.

7 Concluding Remarks

In this paper, we investigate the causal linkages between COVID-19 virus spread, health

containment policies, and economic activity. Our findings show the effectiveness of health

containment policies implemented during COVID-19 at curbing the spread of the virus.

While we find they lead to a contraction of economic activity, our findings imply that their

impact is largely transitory. We also find that economic support policies can be complemen-

tary to health containment policies, ensuring the stability of economic activity while aiding

in the reduction of COVID-19 spread.

Our analysis is best suited to investigate the joint dynamics between COVID-19 spread,

health containment policies, and economic activity in the absence of vaccines; thus our focus

on the pre-vaccine period up to January 2021. With the introduction of vaccines, the analysis

and identification strategy would need to be extended in a model in which vaccine take-up

rates are modeled explicitly along with non-vaccine health containment policies. These are

important issues that remain for future research.

Thus, our analysis in this paper is informative about the design of health and economic

policies during the early stages of a pandemic, when only non-pharmaceutical tools are

available to combat it. To the extent that vaccines become less effective with the emergence

of new variants, our findings can also prove critical at advance stages of a pandemic.
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